home *** CD-ROM | disk | FTP | other *** search
- à 1.2èèFirst Order Initial Value Problems ç ê form y» = f(x)
-
- äè Fïd ê general solution
-
- â y» = 6x - 5
- èè░
- y = ▒ 6x - 5èdxè
- èè▓
- Integratïg usïg ê power rule yields
- yè=è3xì - 5x + C as ê general solution.
-
- éSè A FIRST ORDER DIFFERENTIAL EQUATION ç ê form
-
- y» = f(x)
-
- can be INTEGRATED directly ë yield
- èèè░
- yè=è▒èf(x) dxè+èC
- èè èèè▓
- where C is a CONSTANT OF INTEGRATION i.e. an arbitrary
- constant.èIt is present as ê derivative ç any constant is
- zero, êreby losïg any ïformation about its value.èThus,
- ï ê reverse process ç ïtegration we cannot specify which
- constant, if any, was present prior ë differentiation.
-
-
- 1 y» = 6xì - 4x + 7
-
-
- A) 12x - 4 + C B) 2xÄ - 2xì + 7x + C
-
- C) 12x + 3 + C D) 2xÄ - 2xì + 7 + C
-
- ü For y» = 6xì - 4x + 7,
-
- you ïtegrate èè░
- y = ▒ 6xì - 4x + 7èdx
- èè▓
- Usïg ê power rule,
-
- y =è6 xÄ/3 - 4 xì/2 + 7 x + C
-
- The general soution is
-
- y = 2xÄ - 2xì + 7x + C
-
- Ç B
-
- 2 dy
- ──è=è2cos[3x]
- dx
-
- A) 6sï[3x] + C B) -6sï[3x] + C
-
- C) 2/3 sï[3x] + C D) -2/3 sï[3x] + C
-
- ü Forè dy
- èèè èèè──è=è2cos[3x]
- èèèdx
- you ïtegrate èè░
- y = ▒ 2 cos[3x]èdx
- èè▓
- Usïg substitution
- u = 3x, du= 3 dx i.e. dx = du/3
-
- èè èè░
- y = ▒ 2 cos[u]èdu/3
- èè▓
- y =è2/3 sï[u] + C
-
- Substitutïg back ë ê origïal variable, ê general
- soution is
-
- y = 2/3 sï[3x] + C
-
- Ç C
-
- 3 y» = xe╣
-
-
- A) xe╣ + C B) xìe╣/2 + C
-
- B) xe╣ + e╣ + C D) xe╣ - e╣ + C
-
- ü Forè y» = xe╣
-
- you ïtegrate èè░
- y = ▒ xe╣èdx
- èè▓
- Usïg ïtegration by parts
- u = x du = dx
- dv = e╣èv = e╣
-
- è èè░ è
- y = ▒ xe╣èdxè
- èè▓
- èè ░
- è=èxe╣è-è▒èe╣èdx
- èè ▓ è
- The general solution is
-
- y =èxe╣è-èe╣è+èC
-
- Ç D
-
- 4 èèè ╨║
- y» = xe
-
- è ╨║ ╨║
- A) xìeè + C B) eè/2 + C
- è ╨Ä/3 è╨ì
- C) x║eèè/6 + C D) xeè + C
-
- ü è Forèèèè ╨║
- y» = xe
-
- you ïtegrate èè░è ╨ì
- y = ▒ xeè dx
- èè▓
- Usïg substitution
- u = xìèèdu = 2x dxèsoèdx = du/2
-
- è èè░ è
- y = ▒ xe╗ du/2xè
- èè▓
- èè 1è░
- è=è─è▒èe╗èdu
- èè 2 ▓ è
- The solution is terms ç u isè e╗/2 + C
- Substitutïg back ë ê origïal variable yields ê
- general solution
- èèè╨║
- y =èeè/2è+ C
-
- Ç B
-
- 5 y» = sec[x]tan[x]
-
- A) secì[x]tan[x]/2 + C
-
- B) secì[x]tanì[x]/4 + C
-
- C) sec[x] + C
-
- D) sec[x] + C
-
- ü è Forèy» = sec[x]tan[x]
-
- you ïtegrate èè░
- y = ▒ sec[x]tan[x] dx
- èè▓
- directly via a trig diferentiation formula ë yield ê
- general solution
-
- y = sec[x] + C
-
- Ç C
-
- äèèSolve ê ïitial value problem
-
- â è Forèèy» = -2x + 5
- y(0) =è4
- Integratïg, usïg ê power rules yields ê general
- solutionèè y = -xì + 5x + C
- Substitutïg x = 0 yieldsè 4 = C
- Thus ê solution isèy = -xì + 5x + 4
-
- éS The general solution ë a first order differential
- equation contaïs one arbitrary constant ç ïtegration
-
- y = F(x) + C
-
- whereèF is ê ANTIDERIVATIVE ç f ï y» = f(x)
-
- This equation represents a FAMILY OF CURVES which are
- identical except for ê value ç C.èExcept for possibly one
- poït that ê entire family passes through [For example,
- ê family y = cx are lïes passïg through ê origï], ê
- members ç ê family are mutually exclusive å pass through
- all poïts ï ê plane.èThus, specifiyïg one poït that lies
- on ê specific solution will be sufficient ïformation ë
- decide on ê value ç C.
-
- Formally, an Initial Value Problem for a FIRST ORDER
- DIFFERENTIAL EQUATIONèconsists ç two parts
-
- 1) A first order differential equation
-
- 2) An INITIAL VALUE, generally ï ê form
-
- y(x╙) = y╙
-
- The process for solvïg ê ïitial value problem is
- a two-step one.è
- First solve ê differential equation ë produce a
- general solution with an arbitrary constant ç ïtegration.
- Second, substitute ê ïitial value x╙ ïë ê
- general solution å equate ê result ë y╙.èThis is one
- equation ï ê unknown C.èSolvïg it produces ê solution
- ç ê ïitial value problem.
-
- 6 y» = 4x - 7
- èèè y(0) = 4
-
-
- A) 2xì - 7x - 4 B) 2xì - 7x
-
- C) 2xì - 7x + 4 D) 2xì - 7x + 7
-
- ü èè Forèèy» = 4x - 7
-
- Direct itegration produces ê general solution
-
- y = 2xì - 7x + C
-
- Substitutïg x = 0 å y = 4 yields
-
- 4 = C
-
- Thus ê solution ç ê ïitial value problem is
-
- y = 2xì - 7x + 4
-
- Ç C
-
- 7è y» = xì - 4x
- y(3) = 5
-
-
- A) xÄ/3 - 2xì - 4 B) xÄ/3 - 2xì
-
- C) xÄ/3 - 2xì + 5 D) xÄ/3 - 2xì + 14
-
-
- ü èè Forèèy» = xì - 4x
-
- Direct itegration produces ê general solution
-
- y = xÄ/3 - 2xì + C
-
- Substitutïg x = 3 å y = 5 yields
-
- 5 = 9 - 18 + C
-
- So C = 14
-
- Thus ê solution ç ê ïitial value problem is
-
- y = xÄ/3 - 2xì + 14
-
- Ç D
-
- 8 y» = 1/xì
- y(1) = 4
-
-
- A) 1/x + 3 B) -1/x + 5
-
- C) 2/xÄ + 2 D) -2/xÄ + 6
-
- ü èè Forèèy» = 1/xìè= xúì
-
- Direct itegration, usïg ê power rule, produces ê general
- solution
-
- y = xúî/-1 + C
-
- è= -1/x + C
-
- Substitutïg x = 1 å y = 4 yields
-
- 4 = -1 + C
-
- So C = 5
-
- Thus ê solution ç ê ïitial value problem is
-
- y = -1/x + 5
-
- Ç B
-
- 9 y» = 6eÄ╣ + 3
- y(1) = 2eÄ + 4
-
-
- A) 6eÄ╣ - 2 B) 6eÄ╣ + 3x + 1
-
- C) 2eÄ╣ + 4 D) 2eÄ╣ + 3x + 1
-
- ü èè Forèèy» = 6eÄ╣ + 3
-
- Splittïg this ïë two ïtegrals å usïg substitution
- on ê first yields
-
- èè ░
- y =è▒è6eÄ╣ + 3èdx
- èè ▓
- u = 3xèdu = 3 dxèsoèdx = du/3
- ░ èè░
- yè=è2 ▒ e╗ duè+è▒è3 dx
- ▓ èè▓
- è =è2 e╗è+è3xè+èC
-
- Substitutïg back ë ê origïal variable produces ê
- general solution
-
- y = 2 eÄ╣è+è3xè+èC
-
- Substitutïg x = 1 å y = 2eÄ + 4 yields
-
- 2eÄ + 4 = 2eÄ + 3 + C
-
- So C = 1
-
- Thus ê solution ç ê ïitial value problem is
-
- y = 2eÄ╣ + 3x + 1
-
- Ç D
-
-
-
-
-
-
-